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Evov 
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A solution of the plane problem of the motion of a heat source with constant velocity along the boundary of an elastic half-plane 
is constructed in a development of the method proposed previously in [1] for finding fundamental thermcelastic solutions in the 
case of problems of this type. It is assumed that the boundary of the half-plane is stress-free and that heat exchange with the 
surrounding medium occurs in accordance with Newton's law. It is further assumed that the source velocity of motion is small, 
by virtue of which inertial effects in the half-plane are ignored. The assumption is also made that the physicomechaulcal properties 
of the half-plane are independent of the temperature and that the effect of thermoelastic connectivity can be neglected. A Fourier 
integral transform, the inversion of which is performed by contour integration methods, is used to solve the problems of heat 
conduction and thermoelasticity in question. As a result, formulae are obtained for the temperature of the half-plane and the 
stresses and strains in it. Results of calculations are presented. O 1996 Elsevier Science Ltd. All rights reserved. 

In order to find the thermally stressed state which arises as a consequence of the frictional generation of heat at 
a sliding contact, it i~; necessary to determine the temperature, the stresses and the displacements in the half-plane 
for a heat source which moves along its surface. There are several approaches to the determination of these 
quantities. Serious difficulties of a computational nature arise when summing slowly converging Fourier series when 
realizing the concept of a sinusoidal temperature wave which moves uniformly over the surface of an elastic half- 
plane in combination with the use of thermoelastic displacement potential [2, 3]. Analytic expressions for the 
quasisteady surface displacements and shear stresses which are applicable for arbitrary values of the Peclet number 
have been obtained in [5] by solving a heat conduction problem in the ease of an instantaneous heat source which 
acts on the surface of an elastic half-plane [4]. 

An asymptotic solution has been constructed for large (>  10) values of the Peclet parameter which determines 
the heat flux distribntion in each of the bodies in contact. A finite-element method was employed in [7] for this 
purpose. 

It is assumed in all of the papers mentioned above that the surface of the half-plane, outside the region which 
is heated, is therm~ly isolated. The solution of the quasi-steady heat conduction problem for a heat source which 
moves uniformly over the surface and which takes account of heat exchange with the external medium in accordance 
with Newton's law was obtained in [1]. The corresponding thermal stresses and strains were determined later in 
[8] for large values of the Peclet number. 

1. T H E  H E A T  C O N D U C T I O N  P R O B L E M  

The problem is formulated within the framework of the classical linear theory of thermoelasticity. The heat 
conduction equation in a system ofxy coordinates is rigidly connected with the source which moves at a constant 
velocity V along the boundaryy = 0 of the half-plane has the form 

AT+~T,=O, Ixl<~. y~>0, [J=VIk (1.1) 

(k is the thermal diffusivity). We shall construct a solution of Eq. (1.1) which satisfies the boundary conditions 

g T y - h r = - - Q S ( x ) ,  Ix l< , , ,  y = 0  

T, Tx, Ty ---~ O , rffi_ (x2 + y2 ) ~2 ---~ ** 

(K is the thermal conductivity) using a Fourier integral transform with respect to the variable x. We will represent 
the resulting solution in the form 
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Fig. 1. 

P(x,y,~)=expt-~(y-ix)]/[y+ri(~)], 7 = h l K ,  ~(~)=_~/~2_~  

As a result of integration along the closed contours (Fig. 1) 

F + = L + u C ~  u C  + u I u C  t (1.3) 

(the plus and minus superscripts denote integration along the curve F + when x > 0 and V- when x < 0), we find 
the temperature at an arbitrary point of the half-plane from relation (1.2) 

T ( x , y ) =  Q_.exp(-s0)*[ . R(x'y's)e- '~ds 
nK ~ ~$2 + (2S0 _ [IX)S (1.4) 

S 2 + a l S + b  I 1 
R(x , y , s )=  2 ' so= 13x2~-++~-(x+,'2) 

s +a2s+b  2 

a I =13r+~v, a 2 =13r+2~,  b 1 =([~y12)2+~yr12 ,  b2 =(fJy12)2+~IYt:+7 2r2 

We now consider two well-known special eases of the solution (1.4) 

1. h = 0,y t> 0; then, 7 = O, R(x ,y ,  s)  = 1 and 

T(x,y)= Q-~expf-~X~Ko(~rl 
~ \ z j  k z )  

(1.5) 

(K0(.) is a modified Bessel function of the second kind); 
2. h ;e 0,y = 0; then, the temperature of the boundary points of the convectively cooled half-plane is equal to 

x-~ i ~s2 + s exp(-f l lxls)ds c t = ?  (1.6) 
T(x,O)= exp(-s0) s2 +s+ct2 , 13 

Relations (1.5) and (1.6) were obtained for the first time in [4] and [1] respectively. 

2. T H E  P R O B L E M  O F  T H E R M O E L A S T I C I T Y  

We shall represent the components of the thermal stresses in terms of the Airy function • and the thermoelastic 
displacement potential tt' in the form [9] 

ax = F,yy, ay = F,xx, ¢Jxy = - F,xy, F z ~P- 2tt~F (2.1) 
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(It is the shear modulus). 
We determine the functions ~ and o/from the solution of the thermoelastic boundary-value problem 

AA~=0,  AW=NT, kl<**, y ~ 0 ;  N = ( I  +v)(x/q(l-v) 

%(x, o) ffi Oxy(X, o) = o, trl <** 

t~x, Gy, t~xy---}0 as r--e** 

(2.2) 

(2.3) 

(2.4) 

Here, v is Poisson's ratio and 0t T is the coefficient of linear thermal expansion. 
We find a solution of the boundary-value problem (2.2)--(2.4) using a Fourier integral transform with respect to 

the variable x. We have 

(2.5) 

Here 

F(x, y) = 2WV~-I[L(x, y) + M(x, y)] 

L = L 1 + y(L 2 + L3) (2.6) 

ffi Q . . . . .  Q . _ f , 7 P ( x , r , D a ~ l  l - l (x 'Y) -"n"KKeqtx 'Y;="~r 'e l 'g  ~ "f (2.7) 

L2(x .y) i  Q R e l ~ ( x . y ) = - ~ R e { , i i ~ ( ~ ) P ( ~ ' Y ' ~ ' d ~  } 

L 3 ( x . Y ) - - ~ R e L ~ ( x . Y ) f ~ R e { i i P ( x . y . { ) d ~  } 

M(x,y)ffi Q-~ReM'(x,y)= Q--~ReJ-i7 expt-yq(~)]P(x'O'~)d~ 
n r  ~ t 6  ~ J 

(2.8) 

(2.8) 

(2.9) 

It follows from folmula (2.5) that the stress function F is the sum of two integrals. The first of these L (2.6) 
corresponds to the bilaarmonie function ~ and has the form of the transform of the Laplace integral transformation 
of a certain function when;y >~ 0 with respect to the variable ~. The second integral, M (2.9) is related to the 
thermoelastie stress potential ~F 

• (x, y) = 2BNfi-1M(x, y) (ZlO) 

where 

M. x = T, M.yy = -T x - fiT (2.11) 

We shall use the notation 

lffO.,X ~,y = Li,xx + ~ , = )  ffi Si ' • . . . .  = = - ~ : y  =-~Li,yy - S2 Y(/-~xx 
(2.12) 

/-~2,x = -i/~,y --S 3 

Differentiating the stress function F (2.5), in accordance with formulae (2.1), when account is taken of 
(2.10)-(2.12), we find 

o x = N t R e ( - S  t + S 2 + 2 iS  3 - fiT* - T,*x ), tyy = N I R ¢ ( S  l + S 2 + T,~ ) 

(2.13) 
Oxy = - N  I Re(iS I +S 3 +T~,), N 1 =21INQ(M~) -I , T* = ltKTIQ 

We note that, whevLy = 0, it follows from formulae (2.13) that % = %r = 0. 
~.,~ elastic displacements are related to the thermal stresses using the Duhamel-Neumann formulae [9] 

21.tu, x = (1 - V)cI x - vay + 24(1 + V)(XTT 

21a~, x -- (1 - V)t~y - vff x + 21a(l + V)IXTT 
(2.14) 
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Substituting the value of the stresses (2.13) into the right-hand sides of relations (2.14) and integrating with respect 
tox  andy, we obtain 

u = N 2 Re{(l - v)i[2/_: 2 + ~ + yL~3 ] - vL, x -T*} (2.15) 

= N 2 Re {(1 - v)[ ~ + 2 E.~ - Y/-~23 ] -  vL*,y - M.~,. } 

* * ' ' * m . / ~  * N2=NII (2B) ,  I.~3=$2+iS 3, L,x=tS3-1yl.~3, E*y +yL;23 

3. F I N D I N G  T H E  F U N C T I O N S  L~,  L~ A N D  M*.y 

It follows from relations (2.13) and (2.15) that the components of the thermal stress tensor and the displacement 
vector can be expressed in terms of the functions L~, L], T*, their derivatives and, also, the function ~ .  The 
temperature at an arbitrary point of the half-space is given by formula (1.4). 

We now consider the integrals L~, j = 2, 3 (2.7), (2.8) and use the notation 

s=_~(y_ix), 2s2 _+(s 2_~xs)+4(s  2 _~xs)2 +1~2y2 

Then 

~ 2 ~ - ~ -  ~ = (S+ - i S _ ) l ( y - i x )  

and the functions L~, L ~, take the form of the transforms of Laplace integral transformations with the transformation 
parameterp = 1. 

Aj 
E;(x,y)= !'Lj(x,y,s)e-Sds, "Lj = -~-, j = 2 , 3  

sA 2 = ~(xs+ - ys_ ) -  i[s+ (s+ +'ty) + s_ (s_ + yx)] 

A 3 = -(s_ +Tx)+i(s+ +~y), D = (s+ +yy)2 +(s_ +Vx) 2 

(3.1) 

When account is taken of formula (2.9), the integral 

, ** rl(~)exp[-yq(g)lP(x,0,g)d~ 
M, v = i f  

reduces to a form which is convenient for computerized calculation using integration along dosed contours (1.3). 
As a result, we obtain 

M3*'(x'Y)= ~, ~'y(x'y's)e-sds (3.2) 

(_~q_ + i(~2 +~2 + ~I~+ ))(B-,~3y) 
M-~.y(x,y,s)= s ( (y+~2)+~2)  B , B = f f 4 s 2 - 4 ~ x s - ~ 2 y  2 

~+ =r-2y(2s-~x)12 ,  ~_=r-2xBI2,  f f ~ - / ~ = ~ + + ~ _  

If the surface of the half-plane is thermally insulated (h = 0, y ;~ 0), it then follows from formulae (3.1) 
that 

~_,2 = -is -1 , -L3 = i[ s2 - t~3( y -  ix )s ] -~  

From where [10], we obtain 

/-~ = ilnly_ix, L.~ = i e xp[ -~ (y - i x ) l  2]Ko[-~(y- ix ) /2]  (3.3) 

We note that the function is differentiable although it is unbounded. When account is taken of the relation [11] 

K o (z) = niH(o I) (iz) / 2, - x < arg(z) < 0 

(H(~)(.) is the Hankel function), we find from (3.3) that 
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= - n e x p [ - ~ ( y -  ix)/21H (1) [13(y- ix)/2]/2 

On the basis of (32), the real part of the function M,~ when 7 = 0,y ¢ 0 has the form 

Re M,:,= - ~ +  arccos(--x ] _  ~_~y } exp(-- - -~  ]Ko( - -~  ]ds 
• z k r /  z 0  \ z / \ , ~ /  

If, however, y ~ 0:,y = 0, then, from relation (3.1), we find 

[. o o 

+aexp(-[~x)i(s2 + s)-~E+ (x,s)ds, x > 0 

I~ =-ii(s-l)E_(x,s)ds-ai(s+l)(s2 +s)-~E+(x,s)ds, x<0 

E+ (x,s) = exp(-~l xl$) I (s 2 __. s + a 2 ) 

In the case of the lhnction L~, the corresponding formulae take the form 

0 

+iexp(-l~x)i~s2 + $ E+ ( x,s )ds, x > 0 

I 

L; = i l l s  2 +sE+(x,s)ds+aIE+(x,s)ds, x < 0  
0 0 

The real part of the function M,~ is equal to - R e  L~ in the case under consideration. 
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(3.4) 

(3.5) 

4. A S Y M P T O T I C  B E H A V I O U R  

For the solution oI contact problems of thermoelasticity taking the frictional generation of heat into account it 
is necessary to have expressions for the normal thermal displacements of the surface of the bodies in contact. When 
y = 0, we have from 'the second of relations (2.15) that 

~(x,0) = 2(I - v)N 2 Re(/~ + L~ ) 

from which, when ao~ount is taken of formulae (3.4) and (3.5), we obtain 

a~(x, 0) = -2( 1 - v)N2V(x) (4.1) 

{exp(-l~x) V÷(x), x > 0  V(x)= H ( x ) s e x p ( ~  s)-2-~ a (4.2) 
0 43_$ 2 +a V_(X), x < 0  

V+ (x) = t($ - ~$2 + s )($2 + s)-l/2 E+ (x,s)ds 
(4.3) 

V_ (x) = 7 ( ~ s  2 + s - s - l)(s 2 + $)-I/2 E+ (x, s)ds 
0 

(H(.) is the Heaviside function). 
The integrands in expressions (4.3) are rapidly decreasing functions as s ~ .o. Hence, the principal contribution 

to V±(x) will be deteJanined by the behaviour of these functions in the neighbourhood of zero. Assuming that 0 
<~ s ~< ~i ,g 1 and a < ~/~, we find 

V+(x) =- J2(x,8)-Jl(X,~), V-(x) = Jl(X,8)7-J2(x,8)-J3(x,8) (4.4) 

Here 

JI (x,8) = lnla 2 +/il-lnla21+~lxl (8-~t  2 lnIGt 2 +Sl+a  2 lnlot21) 



164 A . A .  Yevtushenko et al. 

J2 (x,5) = 215- a arctg(81/2 / 0t)] + 2[$1xl [8312 / 3 -  iX28112 + 0t 3 arctg(8112 / ct)] 

J3 (x, 5) = 2 arctg(8112 / Ix) / 0t + 21}lxl [ 5 -  0farctg(8112 / (z)] 

When a ~ O, it follows from relations (4.4) and (4.5) and V+(x) = O, V_(x) = -n/a.  Since [12] 

i exp(-~Jlxls)ds . . . . .  ( ~ ~, ( [llxl'~ 

we have 

V(x) = $Ttexp(-~x / 2)• 0 ([31xi/2), x > 0 

L 7t, x < 0  

(J0(') is the modified Bessel function of the first kind). 
Relation (4.1), in the case of V(x) (4.6), is identical to the well-known result in [5]. 

(4.5) 

(4.6) 

5. N U M E R I C A L  A N A L Y S I S  

The distribution of the dimensionless temperature T*(x, 0) of the surface of the elastic half-plane, calculated 
using formula (1.6) with ~ ffi 1 and different values of T, is shown in Fig. 2. The results for y ffi 0.01 are identical 
with an accuracy of 10 --4 to the data obtained using formula (1.5) in the case when the surface y = 0 of the half- 
plane is thermally insulated. 

The change in the normal stress V(x) of the boundary of the half-plane, found when ~ = I for different a using 
formula (4.2), is shown in Fig. 3. The results represented by the dashed line were obtained by means of calculations 
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Fig. 2. 
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Fig. 4. 
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using formula (4.6). At  small (of the order of 0.01 or less) values of the parameter ~ the asymptotic relations (4.4) 
and (4.5) can be used to calculate the normal displacements. 

The change in V(x) for a fixed value of the parameter  y = 0.1 and various [3 is shown in Fig. 4. Data from a 
calculation using formula (4.6) with [~ = 10 are represented by the dashed line. An analysis of the results of the 
calculations showed that formula (4.6) can be used when ~ < 0.1. In this case, when the parameter  13 is increased 
(greater than 10), the behaviour of the displacement V(x) can be approximated to a high degree of accuracy by 
the step function H(-x). 
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